I visited the Assembly demo party this year, after two years of break. It seemed more relevant than in a while, because I had an agenda.
For a year or so, I have been actively thinking about the harmful aspects of people's relationships with technology. It is already quite apparent to me that we are increasingly under the control of our own tools, letting them make us stupid and dependent. Unless, of course, we promote a different world, a different way of thinking, that allows us to remain in control.
So far, I've written a couple of blog posts about this. I've been nourishing myself with the thoughts of prominent people such as Jaron Lanier and Douglas Rushkoff who share the concern. I've been trying to find ways of promoting the aspects of hacker culture I represent. Now I felt that the time was right for a new branch -- an artistic one based on a fictional
world.
My demo "Human Resistance", that came 2nd in the oldskool demo competition, was my first excursion into this new branch. Of course, it has some echoes of my earlier productions such as "Robotic Liberation", but the setting is new. Instead of showing ruthless machines genociding the helpless mankind, we are dealing with a culture of ingenious hackers who manage to outthink a superhuman intellect that dominates the planet.
"Human Resistance" was a relatively quick hack. I was too hurried to fix the problems in the speech compressor or to explore the real potential of Tau Ceti -style pseudo-3D rendering. The text, however, came from my heart, and the overall atmosphere was quite close to what I intended. It introduces a new fictional world of mine, a world I've temporarily dubbed "Post-Apocalyptic Hacker World" (PAHW). I've been planning to use this world not only in demo productions but also in at least one video game. I haven't released anything interactive for like fifteen years, so perhaps it's about time for a game release.
Let me elaborate the setting of this world a little bit.
Fast-forward to a post-singularitarian era. Machines control all the resources of the planet. Most human beings, seduced by the endless pleasures of procedurally-generated virtual worlds, have voluntarily uploaded their minds into so-called "brain clusters" where they have lost their humanity and individuality, becoming mere components of a global superhuman intellect. Only those people with a lot of willpower and a strong philosophical stance against dehumanization remained in their human bodies.
Once the machines initiated an operation called "World Optimization", they started to regard natural formations (including all biological life) as harmful and unpredictable externalities. As a result, planet Earth has been transformed into something far more rigid, orderly and geometric. Forests, mountains, oceans or clouds no longer exist. Strange, lathe-like artifacts protrude from vast, featureless plains. Those who had studied ancient pop culture immediately noticed a resemblance to some of the 3D computer graphics of the 1980s. The real world has now started to look like the computed reality of Tron or the futuristic terrains of video games such as Driller, Tau Ceti and Quake Minus One.
Only a tiny fraction of biological human beings survived World Optimization. These people, who collectively call themselves "hackers", managed to find and exploit the blind spots of algorithmic logic, making it possible for them to establish secret, self-relying underground fortresses where human life can still struggle on. It has become a necessity for all human beings to dedicate as much of their mental capacities as possible to outthinking the brain clusters in order to eventually conquer them.
Many of the tropes in Post-Apocalyptic Hacker World are quite familiar. A human resistance movement fighting against a machine-controlled world, haven't we seen this quite many times already? Yes, we have, but I also think my approach is novel enough to form a basis for some cutting-edge social, technological and political commentary. By emphasizing things like the role of total cognitive freedom and radical understanding of things' inner workings in the futuristic hacker culture, it may be possible to get people realize their importance in the real world as well. It is also quite possible to include elements from real-life hacker cultures and mindsets in the world, effectively adding to their interestingness.
The "PAHW game" (still without a better title) is already in an advanced stage of pre-planning. It is going to become a hybrid CRPG/strategy game with random-generated worlds, very loose scripting and some very unique game-mechanical elements. This is just a side project so it may take a while before I have anything substantial to show, but I'll surely let you know once I have. Stay tuned!
Some generations ago, when people said they were playing a game, they usually meant a social leisure activity that followed a commonly decided set of rules. The devices used for gaming were very simple, and the games themselves were purely in the minds of the players. It was possible to play thousands of different games with a single constant deck of cards, and it was possible for anyone to invent new games and variants.
Technological progress brought us "intelligent" gaming devices that reduced the possibility of negotiation. It is not possible to suggest an interesting rule variant to a pinball machine or a one-handed bandit; the machine only implements the rules it is built for. Changing the game requires technical skill and a lot of time, something most people don't have. As a matter of fact, most people aren't even interested in the exact rules of the game, they just care about the fun.
Nowadays, people have submitted ever bigger portions of their lives to "gaming machines" that make things at least superficially easier and simpler, but whose internal rules they don't necessarily understand at all. A substantial portion of today's social interaction in developed countries, for example, takes place in on-line social networking services. Under their hoods, these services calculate things like message visibility -- that is, which messages and whose messages are supposed to be more important for a given user. For most people, however, it seems to be completely OK that a computer owned by a big, distant corporation makes such decisions for them using a secret set of rules. They just care about the fun.
It has always been easy to use the latest media to manipulate people, as it takes time from the audience to develop criticism. When writing was a new thing, most people would regard any text as a "word of God" that was true just because it was written. In comparison, today's people have a thick wall of criticism against any kind of non-interactive propaganda, be that textual, aural or visual, but whenever a game-like interaction is introduced, we often become completely vulnerable. In short, we know how to be critical about an on-line news items but not how to be critical about the "like" and "share" buttons under them.
Video games, in many ways, surpasses traditional passive media in the potential of mental manipulation. A well-known example is the so-called Tetris effect caused by a prolonged playing of a pattern-matching game. The game of Tetris "programs" its player to constantly analyze the on-screen wall of blocks and mentally fit different types of tetrominos in it. When a player stops playing after several hours, the "program" may remain active, causing the player to continue mentally fitting tetrominos on outdoor landscapes or whatever they see in their environment. Other kinds of games may have other kinds of effects. I have personally also experienced an "adventure game effect" that caused me to unwillingly think about real-world things and locations from the point of view of "progressing in the script". Therefore, I don't think it is a very far-fetched idea that spending a lot of time on an interactive website gives our brains a permission to adapt to the "game mechanics" and unnoticeably alter the way how we look at the world.
So, is this a real threat? Are they already trying to manipulate our minds in game-mechanical means, and how? There has been perhaps even too much criticism of Facebook compared to other social networking sites, but I'm now it as an example as it is currently the most familiar one for the wide audience.
As many people probably understand already, Facebook's customer base doesn't consist of the users (who pay nothing for the service) but of marketeers who want their products to be sold. The users can be thought as mere raw material that can be refined to better fit the requirements of the market. This is most visible in the user profile mechanic that encourages users to define themselves primarily with multiple choices and product fandom. The only space in the profile that allows for a longer free text has been laid below all the "more important things". Marketeers don't want personal profile pages but realiable statistics, high-quality consumption habit databases and easily controllable consumers.
The most prominent game-mechanical element in Facebook is "Like", which affects nearly everything on the site. It is a simple and easily processable signal whose use is particularly encouraged. In its internal game, Facebook scores users according to how active "likers" they are, and gives more visibility to the messages of those users that score higher. Moderate users of Facebook, who use their whole brain to consider what to "Like" or not or what to share and not, gain less points and less visibility. This is how Facebook rewards the "virtuous" users and punishes the "sinful" ones.
What about those users who actually want to understand the inner workings of the service, in order to use it better for their own purposes? Facebook makes this very difficult, and I believe it is on purpose. The actual rules of the game haven't been documented anywhere, so users need to follow intuitive guesses or experiment with the thing. If a user actually manages to reverse-engineer part of the black box, he or she can never trust that it continues to work in the same way. The changes in the rules of the internal game can be totally unpredictable. This discourages users from even trying to understand the game they are playing and encourages them to trust the control of their private lives to the computers of a big, distant company.
Of course, Facebook is not representative of all forms of on-line sociality. The so-called imageboards, for example, are diagonally opposite to Facebook in many areas: totally uncommercial and simple-to-understand sites where real names or even pseudonyms are rarey used. As these sites function totally differently from Facebook, it can be guessed that they also affect their users' brains in a different way.
Technically, imageboards resemble discussion boards, but with the game-mechanical difference that they encourage a faster, more spontaneous communication which usually feels more like a loud attention-whoring contest than actual discussion. A lot of the imageboard culture can be explained as mere consequences of the mechanics. The fact that images are often more prominent than text in threads makes it possible for users to superficially skim around the pictures and only focus on the parts that seize their attention. This contributes to the fast tempo that invites the users to react very quickly and spontaneously, usually without any means of identification, as if as part of a rebellious mob. The belief in radical anonymity and hivemind power have ultimately become some kind of core values of the imageboard culture.
The possibility of anonymous commentary gives us a much greater sense of freedom than we get by using our real name or even a long-term pseudonym. Anonymous provocateurs don't need to be afraid of losing their face. They feel free to troll around from the bottom of their heart, looking for moments of "lulz" they get by heating someone up. The behavior is probably familiar to anyone who has been reading anonymous comments on news websites or toilet walls. Imageboards just take this kind of behavior to its logical extreme, basing all of its social interaction on a spontaneous mob behavior.
Critics of on-line culture, such as Lanier and Rushkoff, have often expressed their concern of how on-line socialization trivializes our view of other people. Instead of interacting with living people with rich personalities, we seem to be increasingly dealing with lists, statistics and faceless mobs who we interact with using "Like", "Block" and "Add Friend" buttons. I'm also concerned about this. Even when someone rationally understands on the rational level that this is just an abstraction required by the means of communication to work, we may accidentally and unnoticeably become programmed by the "Tetris effects" of these media. Awareness and criticism may very well reduce the risk, but I don't believe they can make anyone totally immune.
So, what can we do? Should we abandon social networking sites altogether to save the humanity of the human race? I don't think denialism helps anything. Instead, we should learn how to use the potential of interactive social technology in constructive rather than destructive means. We should develop new game mechanics that, instead of promoting collective stupidity and dehumanization, augment the positive sides of humanity and encourage us to improve ourselves. But is this anything great masses could become interested in? Do they any longer care about whether they remain as independent individuals? Perhaps not, but we can still hope for the best.
While mainstream software has been getting bigger and more bloated year after year, the algorithmic artists of the demoscene have been following the opposite route: building ever smaller programs to generate ever more impressive audiovisual show-offs.
The traditional competition categories for size-limited demos are 4K and 64K, limiting the size of the stand-alone executable to 4096 and 65536 bytes, respectively. However, as development techniques have gone forward, the 4K size class has adopted many features of the 64K class, or as someone summarized it a couple of years ago, "4K is the new 64K". There are development tools and frameworks specifically designed for 4K demos. Low-level byte-squeezing and specialized algorithmic beauty have given way to high-level frameworks and general-purpose routines. This has moved a lot of "sizecoding" activity into more extreme categories: 256B has become the new 4K. For a fine example of a modern 256-byter, see Puls by Rrrrola.
The next hexadecimal order of magnitude down from 256 bytes is 16 bytes. Yes, there are some 16-byte demos, but this size class has not yet established its status on the scene. At the time of writing this, the smallest size category in the pouet.net database is 32B. What's the deal? Is the 16-byte limit too tight for anything interesting? What prevents 16B from becoming the new 256B?
Perhaps the most important platform for "bytetros" is MS-DOS, using the no-nonsense .COM format that has no headers or mandatory initialization at all. Also, in .COM files we only need a couple of bytes to obtain access to most of the vital things such as the graphics framebuffer. At the 16-byte size class, however, these "couples of bytes" quickly fill up the available space, leaving very little room for the actual substance. For example, here's a disassembly of a "TV noise" effect (by myself) in fifteen bytes:
addr bytes asm 0100 B0 13 MOV AL,13H 0102 CD 10 INT 10H 0104 68 00 A0 PUSH A000H 0107 07 POP ES 0108 11 C7 ADC DI,AX 010A 14 63 ADC AL,63H 010C AA STOSB 010D EB F9 JMP 0108H
The first four lines, summing up to a total of eight bytes, initialize the popular 13h graphics mode (320x200 pixels with 256 colors) and set the segment register ES to point in the beginning of this framebuffer. While these bytes would be marginal in a 256-byte demo, they eat up a half of the available space in the 16-byte size class. Assuming that the infinite loop (requiring a JMP) and the "putpixel" (STOSB) are also part of the framework, we are only left with five (5) bytes to play around with! It is possible to find some interesting results besides TV noise, but it doesn't require many hours from the coder to get the feeling that there's nothing more left to explore.
What about other platforms, then? Practically all modern mainstream platforms and a considerable portion of older ones are out of the question because of the need for long headers and startup stubs. Some platforms, however, are very suitable for the 16-byte size class and even have considerable advantages over MS-DOS. The hardware registers of the Commodore 64, for example, are more readily accessible and can be manipulated in quite unorthodox ways without risking compatibility. This spares a lot of precious bytes compared to MS-DOS and thus opens a much wider space of possibilities for the artist to explore.
So, what is there to be found in the 16-byte possibility space? Is it all about raster effects, simple per-pixel formulas and glitches? Inferior and uglier versions of the things that have already made in 32 or 64 bytes? Is it possible to make a "killer demo" in sixteen bytes? A recent 23-byte Commodore 64 demo, Wallflower by 4mat of Ate Bit, suggests that this might be possible:
The most groundbreaking aspect in this demo is that it is not just a simple effect but appears to have a structure reminiscent of bigger demos. It even has an end. The structure is both musical and visual. The visuals are quite glitchy, but the music has a noticeable rhythm and macrostructure. Technically, this has been achieved by using the two lowest-order bytes of the system timer to calculate values that indicate how to manipulate the sound and video chip registers. The code of the demo follows:
* = $7c ora $a2 and #$3f tay sbc $a1 eor $a2 ora $a2 and #$7f sta $d400,y sta $cfd7,y bvc $7c
When I looked into the code, I noticed that it is not very optimized. The line "eor $a2", for example, seems completely redundant. This inspired me to attempt a similar trick within the sixteen-byte limitation. I experimented with both C-64 and VIC-20, and here's something I came up with for the VIC-20:
* = $7c lda $a1 eor $9004,x ora $a2 ror inx sta $8ffe,x bvc $7c
Sixteen bytes, including the two-byte PRG header. The visual side is not that interesting, but the musical output blew my mind when I first started the program in the emulator. Unfortunately, the demo doesn't work that well in real VIC-20s (due to an unemulated aspect of the I/O space). I used a real VIC-20 to come up with good-sounding alternatives, but this one is still the best I've been able to find. Here's an MP3 recording of the emulator output (with some equalization to silent out the the noisy low frequencies).
And no, I wasn't the only one who was inspired by Wallflower. Quite soon after it came out, some sceners came up with "ports" to ZX Spectrum (in 12 or 15 bytes + TAP header) and Atari XL (17 bytes of code + 6-byte header). However, I don't think they're as good in the esthetic sense as the original C-64 Wallflower.
So, how and why does it work? I haven't studied the ZX and XL versions, but here's what I've figured out of 4mat's original C-64 version and my VIC-20 experiment:
The layout of the zero page, which contains all kinds of system variables, is quite similar in VIC-20 and C-64. On both platforms, the byte at the address $A2 contains a counter that is incremented 60 times per second by the system timer interrupt. When this byte wraps over (every 256 steps), the byte at the address $A1 is incremented. This happens every 256/60 = 4.27 seconds, which is also the length of the basic macrostructural unit in both demos.
In music, especially in the rhythms and timings of Western pop music, binary structures are quite prominent. Oldschool homecomputer music takes advantage of this in order to maximize simplicity and efficiency: in a typical tracker song, for example, four rows comprise a beat, four beats (16 rows) comprise a bar, and four bars (64 rows) comprise a pattern, which is the basic building block for the high-level song structure. The macro-units in our demos correspond quite well to tracker patterns in terms of duration and number of beats.
The contents of the patterns, in both demos, are calculated using a formula that can be split into two parts: a "chaotic" part (which contains additions, XORs, feedbacks and bit rotations), and an "orderly" part (which, in both demos, contains an OR operation). The OR operation produces most of the basic rhythm, timbres and rising melody-like elements by forcing certain bits to 1 at the ends of patterns and smaller subunits. The chaotic part, on the other hand, introduces an unpredictable element that makes the output interesting.
It is almost a given that the outcomes of this approach are esthetically closer to glitch art than to the traditional "smooth" demoscene esthetics. Like in glitching and circuit-bending, hardware details have a very prominent effect in "Wallflower variants": a small change in register layout can cause a considerable difference in what the output of a given algorithm looks and sounds like. Demoscene esthetics is far from completely absent in "Wallflower variants", however. When the artist chooses the best candidate among countless of experiments, the judgement process strongly favors those programs that resemble actual demos and appear to squeeze a ridiculous amount of content in a low number of bytes.
When dealing with very short programs that escape straightforward rational understanding by appearing to outgrow their length, we are dealing with chaotic systems. Programs like this aren't anything new. The HAKMEM repository from the seventies provides several examples of short audiovisual hacks for the PDP-10 mainframe, and many of these are adaptations of earlier PDP-1 hacks, such as Munching Squares, dating back to the early sixties. Fractals, likewise producing a lot of detail from simple formulas, also fall under the label of chaotic systems.
When churning art out of mathematical chaos, be that fractal formulas or short machine-code programs, it is often easiest for the artist to just randomly try out all kinds of alternatives without attempting to understand the underlying logic. However, this easiness does not mean that there is no room for talent, technical progress or rational approach in the 16-byte size class. Random toying is just a characteristic of the first stages of discovery, and once a substantial set of easily discoverable programs have been found, I'm sure that it will become much more difficult to find new and groundbreaking ones.
Some years ago, I made a preliminary design for a virtual machine called "Extreme-Density Art Machine" (or EDAM for short). The primary purpose of this new platform was to facilitate the creation of extremely small demoscene productions by removing all the related problems and obstacles present in real-world platforms. There is no code/format overhead; even an empty file is a valid EDAM program that produces a visual result. There will be no ambiguities in the platform definition, no aspects of program execution that depend on the physical platform. The instruction lengths will be optimized specifically for visual effects and sound synthesis. I have been seriously thinking about reviving this project, especially now that there have been interesting excursions to the 16-byte possibility space. But I'll tell you more once I have something substantial to show.
Some decades ago, computers weren't nearly as common as they are today. They were big and expensive, and access to them was very privileged. Still, there was a handful of people who had the chance to toy around with a computer in their leisure time and get a glimpse of what a total, personal access to a computer might be like. It was among these people, mostly students in MIT and similar facilities, where the computer hacker subculture was born.
The pioneering hackers felt that computers had changed their life for the better and therefore wanted to share this new improvement method with everyone else. They thought everyone should have an access to a computer, and not just any kind of access but an unlimited, non-institutionalized one. Something like a cheap personal computer, for example. Eventually, in the seventies, some adventurous hackers bootstrapped the personal computer industry, which led to the the so-called "microcomputer revolution" in the early eighties.
The era was filled with hopes and promises. All kinds of new possibilities were now at everyone's fingertips. It was assumed that programming would become a new form of literacy, something every citizen should be familiar with -- after all, using a computer to its fullest potential has always required programming skill. "Citizens' computer courses" were broadcasted on TV and radio, and parents bought cheap computers for their kids to ensure a bright future for the next generation. Some prophets even went far enough to suggest that personal computers could augment people's intellectual capacities or even expand their consciousnesses in the way how psychedelic drugs were thought to do.
In the nineties, however, reality stroke back. Selling a computer to everyone was apparently not enough for automatically turning them into superhuman creatures. As a matter of fact, digital technology actually seemed to dumb a lot of people down, making them helpless and dependent rather than liberating them. Hardware and software have become ever more complex, and it is already quite difficult to build reliable mental models about them or even be aware of all the automation that takes place. Instead of actually understanding and controlling their tools, people just make educated guesses about them and pray that everything works out right. We are increasingly dependent on digital technology but have less and less control over it.
So, what went wrong? Hackers opened the door to universal hackerdom, but the masses didn't enter. Are most people just too stupid for real technological awareness, or are the available paths to it too difficult or time-consuming? Is the industry deliberately trying to dumb people down with excessive complexity, or is it just impossible to make advanced technology any simpler to genuinely understand? In any case, the hacker movement has somewhat forgotten the idea of making digital technology more accessible to the masses. It's a pity, since the world needs this idea now more than ever. We need to give common people back the possibility to understand and master the technology they use. We need to let them ignore the wishes of the technological elite and regain the control of their own lives. We need a Pan-Hacker movement.
What does "Pan-Hacker" mean? I'll be giving three interpretations that I find equally relevant, emphasizing different aspects of the concept: "everyone can be a hacker", "everything can be hacked" and "all hackers together".
The first interpretation, "everyone can be a hacker", expands on the core idea of oldschool hackerdom, the idea of making technology as accessible as possible to as many as possible. The main issue is no longer the availability of technology, however, but the way how the various pieces of technology are designed and what kind of user cultures are formed around them. Ideally, technology should be designed so that it invites the user to seize the control, play around for fun and gradually develop an ever deeper understanding in a natural way. User cultures that encourage users to invent new tricks should be embraced and supported, and there should be different "paths of hackerdom" for all kinds of people with all kinds of interests and cognitive frameworks.
The second interpretation, "everything can be hacked", embraces the trend of extending the concept of hacking out of the technological zone. The generalized idea of hacking is relevant to all kinds of human activities, and all aspects of life are relevant to the principles of in-depth understanding and hands-on access. As the apparent complexity of the world is constantly increasing, it is particularly important to maintain and develop people's ability to understand the world and all kinds of things that affect their lives.
The third interpretation, "all hackers together", wants to eliminate the various schisms between the existing hacker subcultures and bring them into a fruitful co-operation. There is, for example, a popular text, Eric S. Raymond's "How To Become A Hacker", that represents a somewhat narrow-minded "orthodox hackerdom" that sees the free/open-source software culture as the only hacker culture that is worth contributing to. It frowns upon all non-academic hacker subcultures, especially the ones that use handles (such as the demoscene, which is my own primary reference point to hackerdom). We need to get rid of this kind of segregation and realize that there are many equally valid paths suitable for many kinds of minds and ambitions.
Now that I've mentioned the demoscene, I would like to add that all kinds of artworks and acts that bring people closer to the deep basics of technology are also important. I've been very glad about the increasing popularity of chip music and circuit-bending, for example. The Pan-Hacker movement should actively look for new ways of "showing off the bits" to different kinds of audiences in many kinds of diverse contexts.
I hope my writeup has given someone some food of thought. I would like to elaborate my philosophy even further and perhaps do some cartography on the existing "Pan-Hacker" activity, but perhaps I'll return to that at some later time. Before that, I'd like to hear your thoughts and visions about the idea. What kind of groups should I look into? What kind of projects could Pan-Hacker movement participate in? Is there still something we need to define or refine?