Sunday, 2 October 2011

Algorithmic symphonies from one line of code -- how and why?

Lately, there has been a lot of experimentation with very short programs that synthesize something that sounds like music. I now want to share some information and thoughts about these experiments.

First, some background. On 2011-09-26, I released the following video on Youtube, presenting seven programs and their musical output:


This video gathered a lot of interest, inspiring many programmers to experiment on their own and share their findings. This was further boosted by Bemmu's on-line Javascript utility that made it easy for anyone (even non-programmers, I guess) to jump in the bandwagon. In just a couple of days, people had found so many new formulas that I just had to release another video to show them off.


Edit 2011-10-10: note that there's now a third video as well! http://www.youtube.com/watch?v=tCRPUv8V22o

It all started a couple of months ago, when I encountered a 23-byte C-64 demo, Wallflower by 4mat of Ate Bit, that was like nothing I had ever seen on that size class on any platform. Glitchy, yes, but it had a musical structure that vastly outgrew its size. I started to experiment on my own and came up with a 16-byte VIC-20 program whose musical output totally blew my mind. My earlier blog post, "The 16-byte frontier", reports these findings and speculates why they work.

Some time later, I resumed the experimentation with a slightly more scientific mindset. In order to better understand what was going on, I needed a simpler and "purer" environment. Something that lacked the arbitrary quirks and hidden complexities of 8-bit soundchips and processors. I chose to experiment with short C programs that dump raw PCM audio data. I had written tiny "/dev/dsp softsynths" before, and I had even had one in my email/usenet signature in the late 1990s. However, the programs I would now be experimenting with would be shorter and less planned than my previous ones.

I chose to replicate the essentials of my earlier 8-bit experiments: a wave generator whose pitch is controlled by a function consisting of shifts and logical operators. The simplest waveform for /dev/dsp programs is sawtooth. A simple for(;;)putchar(t++) generates a sawtooth wave with a cycle length of 256 bytes, resulting in a frequency of 31.25 Hz when using the the default sample rate of 8000 Hz. The pitch can be changed with multiplication. t++*2 is an octave higher, t++*3 goes up by 7 semitones from there, t++*(t>>8) produces a rising sound. After a couple of trials, I came up with something that I wanted to share on an IRC channel:

main(t){for(t=0;;t++)putchar(t*(((t>>12)|(t>>8))&(63&(t>>4))));}

In just over an hour, Visy and Tejeez had contributed six more programs on the channel, mostly varying the constants and changing some parts of the function. On the following day, Visy shared our discoveries on Google+. I reshared them. A surprising flood of interested comments came up. Some people wanted to hear an MP3 rendering, so I produced one. All these reactions eventually led me to release the MP3 rendering on Youtube with some accompanying text screens. (In case you are wondering, I generated the screens with an old piece of code that simulates a non-existing text mode device, so it's just as "fakebit" as the sounds are).

When the first video was released, I was still unsure whether it would be possible for one line of C code to reach the sophistication of the earlier 8-bit experiments. Simultaneities, percussions, where are they? It would also have been great to find nice basslines and progressions as well, as those would be useful for tiny demoscene productions.

At some point of time, some people noticed that by getting rid of the t* part altogether and just applying logical operators on shifted time values one could get percussion patterns as well as some harmonies. Even a formula as simple as t&t>>8, an aural corollary of "munching squares", has interesting harmonic properties. Some small features can be made loud by adding a constant to the output. A simple logical operator is enough for combining two good-sounding formulas together (often with interesting artifacts that add to the richness of the sound). All this provided material for the "second iteration" video.

If the experimentation continues at this pace, it won't take many weeks until we have found the grail: a very short program, maybe even shorter than a Spotify link, that synthesizes all the elements commonly associated with a pop song: rhythm, melody, bassline, harmonic progression, macrostructure. Perhaps even something that sounds a little bit like vocals? We'll see.

Hasn't this been done before?

We've had the technology for all this for decades. People have been building musical circuits that operate on digital logic, creating short pieces of software that output music, experimenting with chaotic audiovisual programs and trying out various algorithms for musical composition. Mathematical theory of music has a history of over two millennia. Based on this, I find it quite mind-boggling that I have never before encountered anything similar to our discoveries despite my very long interest in computing and algorithmic sound synthesis. I've made some Google Scholar searches for related papers but haven't find anything. Still, I'm quite sure that at many individuals have come up with these formulas before, but, for some reason, their discoveries remained in obscurity.

Maybe it's just about technological mismatch: to builders of digital musical circuits, things like LFSRs may have been more appealing than very wide sequential counters. In the early days of the microcomputer, there was already enough RAM available to hold some musical structure, so there was never a real urge to simulate it with simple logic. Or maybe it's about the problems of an avant-garde mindset: if you're someone who likes to experiment with random circuit configurations or strange bit-shifting formulas, you're likely someone who has learned to appreciate the glitch esthetics and never really wants to go far beyond that.

Demoscene is in a special position here, as technological mismatch is irrelevant there. In the era of gigabytes and terabytes, demoscene coders are exploring the potential of ever shorter program sizes. And despite this, the sense of esthetics is more traditional than with circuit-benders and avant-garde artists. The hack value of a tiny softsynth depends on how much its output resembles "real, big music" such as Italo disco.

The softsynths used in the 4-kilobyte size class are still quite engineered. They often use tight code to simulate the construction of an analog synthesizer controlled by a stored sequence of musical events. However, as 256 bytes is becoming the new 4K, there has been ever more need to play decent music in the 256-byte size class. It is still possible to follow the constructivist approach in this size class -- for example, I've coded some simple 128-byte players for the VIC-20 when I had very little memory left. However, since the recent findings suggest that an approach with a lot of random experimentation may give better results than deterministic hacking, people have been competing in finding more and more impressive musical formulas. Perhaps all this was something that just had to come out of the demoscene and nowhere else.

Something I particularly like in this "movement" is its immediate, hands-on collaborative nature, with people sharing the source code of their findings and basing their own experimentation on other people's efforts. Anyone can participate in it and discover new, mind-boggling stuff, even with very little programming expertise. I don't know how long this exploration phase is going to last, but things like this might be useful for a "Pan-Hacker movement" that advocates hands-on hard-core hacking to greater masses. I definitely want to see more projects like this.

How profound is this?

Apart from some deterministic efforts that quickly bloat the code up to hundreds of source-code characters, the exploration process so far has been mostly trial-and-error. Some trial-and-error experimenters, however, seem to have been gradually developing an intuitive sense of what kind of formulas can serve as ingredients for something greater. Perhaps, at some time in the future, someone will release some enlightening mathematical and music-theoretical analysis that will explain why and how our algorithms work.

It already seems apparent, however, that stuff like this stuff works in contexts far beyond PCM audio. The earlier 8-bit experiments, such as the C-64 Wallflower, quite blindly write values to sound and video chip registers and still manage to produce interesting output. Media artist Kyle McDonald has rendered the first bunch of sounds into monochrome bitmaps that show an interesting, "glitchy" structure. Usually, music looks quite bad when rendered as bitmaps -- and this applies even to small chiptunes that sound a lot like our experiments, so it was interesting to notice the visual potential as well.


I envision that, in the context of generative audiovisual works, simple bitwise formulas could generate source data not only for the musical output but also drive various visual parameters as a function of time. This would make it possible, for example, for a 256-byte demoscene production to have an interesting and varying audiovisual structure with a strong, inherent synchronization between the effects and the music. As the formulas we've been experimenting with can produce both microstructure and macrostructure, we might assume that they can be used to drive low-level and high-level parameters equally well. From wave amplitudes and pixel colors to layer selection, camera paths, and 3D scene construction. But so far, this is mere speculation, until someone extends the experimentation to these parameters.

I can't really tell if there's anything very profound in this stuff -- after all, we already have fractals and chaos theory. But at least it's great for the kind of art I'm involved with, and that's what matters to me. I'll probably be exploring and embracing the audiovisual potential for some time, and you can expect me to blog about it as well.

Edit 2011-10-29: There's now a more detailed analysis available of some formulas and techniques.

Wednesday, 7 September 2011

A new propaganda tool: Post-Apocalyptic Hacker World

I visited the Assembly demo party this year, after two years of break. It seemed more relevant than in a while, because I had an agenda.

For a year or so, I have been actively thinking about the harmful aspects of people's relationships with technology. It is already quite apparent to me that we are increasingly under the control of our own tools, letting them make us stupid and dependent. Unless, of course, we promote a different world, a different way of thinking, that allows us to remain in control.

So far, I've written a couple of blog posts about this. I've been nourishing myself with the thoughts of prominent people such as Jaron Lanier and Douglas Rushkoff who share the concern. I've been trying to find ways of promoting the aspects of hacker culture I represent. Now I felt that the time was right for a new branch -- an artistic one based on a fictional
world.

My demo "Human Resistance", that came 2nd in the oldskool demo competition, was my first excursion into this new branch. Of course, it has some echoes of my earlier productions such as "Robotic Liberation", but the setting is new. Instead of showing ruthless machines genociding the helpless mankind, we are dealing with a culture of ingenious hackers who manage to outthink a superhuman intellect that dominates the planet.



"Human Resistance" was a relatively quick hack. I was too hurried to fix the problems in the speech compressor or to explore the real potential of Tau Ceti -style pseudo-3D rendering. The text, however, came from my heart, and the overall atmosphere was quite close to what I intended. It introduces a new fictional world of mine, a world I've temporarily dubbed "Post-Apocalyptic Hacker World" (PAHW). I've been planning to use this world not only in demo productions but also in at least one video game. I haven't released anything interactive for like fifteen years, so perhaps it's about time for a game release.

Let me elaborate the setting of this world a little bit.

Fast-forward to a post-singularitarian era. Machines control all the resources of the planet. Most human beings, seduced by the endless pleasures of procedurally-generated virtual worlds, have voluntarily uploaded their minds into so-called "brain clusters" where they have lost their humanity and individuality, becoming mere components of a global superhuman intellect. Only those people with a lot of willpower and a strong philosophical stance against dehumanization remained in their human bodies.

Once the machines initiated an operation called "World Optimization", they started to regard natural formations (including all biological life) as harmful and unpredictable externalities. As a result, planet Earth has been transformed into something far more rigid, orderly and geometric. Forests, mountains, oceans or clouds no longer exist. Strange, lathe-like artifacts protrude from vast, featureless plains. Those who had studied ancient pop culture immediately noticed a resemblance to some of the 3D computer graphics of the 1980s. The real world has now started to look like the computed reality of Tron or the futuristic terrains of video games such as Driller, Tau Ceti and Quake Minus One.

Only a tiny fraction of biological human beings survived World Optimization. These people, who collectively call themselves "hackers", managed to find and exploit the blind spots of algorithmic logic, making it possible for them to establish secret, self-relying underground fortresses where human life can still struggle on. It has become a necessity for all human beings to dedicate as much of their mental capacities as possible to outthinking the brain clusters in order to eventually conquer them.

Many of the tropes in Post-Apocalyptic Hacker World are quite familiar. A human resistance movement fighting against a machine-controlled world, haven't we seen this quite many times already? Yes, we have, but I also think my approach is novel enough to form a basis for some cutting-edge social, technological and political commentary. By emphasizing things like the role of total cognitive freedom and radical understanding of things' inner workings in the futuristic hacker culture, it may be possible to get people realize their importance in the real world as well. It is also quite possible to include elements from real-life hacker cultures and mindsets in the world, effectively adding to their interestingness.

The "PAHW game" (still without a better title) is already in an advanced stage of pre-planning. It is going to become a hybrid CRPG/strategy game with random-generated worlds, very loose scripting and some very unique game-mechanical elements. This is just a side project so it may take a while before I have anything substantial to show, but I'll surely let you know once I have. Stay tuned!

Sunday, 24 July 2011

Don't submit yourself to a game machine!

(This is a translation of a post in my Finnish blog)

Some generations ago, when people said they were playing a game, they usually meant a social leisure activity that followed a commonly decided set of rules. The devices used for gaming were very simple, and the games themselves were purely in the minds of the players. It was possible to play thousands of different games with a single constant deck of cards, and it was possible for anyone to invent new games and variants.

Technological progress brought us "intelligent" gaming devices that reduced the possibility of negotiation. It is not possible to suggest an interesting rule variant to a pinball machine or a one-handed bandit; the machine only implements the rules it is built for. Changing the game requires technical skill and a lot of time, something most people don't have. As a matter of fact, most people aren't even interested in the exact rules of the game, they just care about the fun.

Nowadays, people have submitted ever bigger portions of their lives to "gaming machines" that make things at least superficially easier and simpler, but whose internal rules they don't necessarily understand at all. A substantial portion of today's social interaction in developed countries, for example, takes place in on-line social networking services. Under their hoods, these services calculate things like message visibility -- that is, which messages and whose messages are supposed to be more important for a given user. For most people, however, it seems to be completely OK that a computer owned by a big, distant corporation makes such decisions for them using a secret set of rules. They just care about the fun.

It has always been easy to use the latest media to manipulate people, as it takes time from the audience to develop criticism. When writing was a new thing, most people would regard any text as a "word of God" that was true just because it was written. In comparison, today's people have a thick wall of criticism against any kind of non-interactive propaganda, be that textual, aural or visual, but whenever a game-like interaction is introduced, we often become completely vulnerable. In short, we know how to be critical about an on-line news items but not how to be critical about the "like" and "share" buttons under them.

Video games, in many ways, surpasses traditional passive media in the potential of mental manipulation. A well-known example is the so-called Tetris effect caused by a prolonged playing of a pattern-matching game. The game of Tetris "programs" its player to constantly analyze the on-screen wall of blocks and mentally fit different types of tetrominos in it. When a player stops playing after several hours, the "program" may remain active, causing the player to continue mentally fitting tetrominos on outdoor landscapes or whatever they see in their environment. Other kinds of games may have other kinds of effects. I have personally also experienced an "adventure game effect" that caused me to unwillingly think about real-world things and locations from the point of view of "progressing in the script". Therefore, I don't think it is a very far-fetched idea that spending a lot of time on an interactive website gives our brains a permission to adapt to the "game mechanics" and unnoticeably alter the way how we look at the world.

So, is this a real threat? Are they already trying to manipulate our minds in game-mechanical means, and how? There has been perhaps even too much criticism of Facebook compared to other social networking sites, but I'm now it as an example as it is currently the most familiar one for the wide audience.

As many people probably understand already, Facebook's customer base doesn't consist of the users (who pay nothing for the service) but of marketeers who want their products to be sold. The users can be thought as mere raw material that can be refined to better fit the requirements of the market. This is most visible in the user profile mechanic that encourages users to define themselves primarily with multiple choices and product fandom. The only space in the profile that allows for a longer free text has been laid below all the "more important things". Marketeers don't want personal profile pages but realiable statistics, high-quality consumption habit databases and easily controllable consumers.

The most prominent game-mechanical element in Facebook is "Like", which affects nearly everything on the site. It is a simple and easily processable signal whose use is particularly encouraged. In its internal game, Facebook scores users according to how active "likers" they are, and gives more visibility to the messages of those users that score higher. Moderate users of Facebook, who use their whole brain to consider what to "Like" or not or what to share and not, gain less points and less visibility. This is how Facebook rewards the "virtuous" users and punishes the "sinful" ones.

What about those users who actually want to understand the inner workings of the service, in order to use it better for their own purposes? Facebook makes this very difficult, and I believe it is on purpose. The actual rules of the game haven't been documented anywhere, so users need to follow intuitive guesses or experiment with the thing. If a user actually manages to reverse-engineer part of the black box, he or she can never trust that it continues to work in the same way. The changes in the rules of the internal game can be totally unpredictable. This discourages users from even trying to understand the game they are playing and encourages them to trust the control of their private lives to the computers of a big, distant company.

Of course, Facebook is not representative of all forms of on-line sociality. The so-called imageboards, for example, are diagonally opposite to Facebook in many areas: totally uncommercial and simple-to-understand sites where real names or even pseudonyms are rarey used. As these sites function totally differently from Facebook, it can be guessed that they also affect their users' brains in a different way.

Technically, imageboards resemble discussion boards, but with the game-mechanical difference that they encourage a faster, more spontaneous communication which usually feels more like a loud attention-whoring contest than actual discussion. A lot of the imageboard culture can be explained as mere consequences of the mechanics. The fact that images are often more prominent than text in threads makes it possible for users to superficially skim around the pictures and only focus on the parts that seize their attention. This contributes to the fast tempo that invites the users to react very quickly and spontaneously, usually without any means of identification, as if as part of a rebellious mob. The belief in radical anonymity and hivemind power have ultimately become some kind of core values of the imageboard culture.

The possibility of anonymous commentary gives us a much greater sense of freedom than we get by using our real name or even a long-term pseudonym. Anonymous provocateurs don't need to be afraid of losing their face. They feel free to troll around from the bottom of their heart, looking for moments of "lulz" they get by heating someone up. The behavior is probably familiar to anyone who has been reading anonymous comments on news websites or toilet walls. Imageboards just take this kind of behavior to its logical extreme, basing all of its social interaction on a spontaneous mob behavior.

Critics of on-line culture, such as Lanier and Rushkoff, have often expressed their concern of how on-line socialization trivializes our view of other people. Instead of interacting with living people with rich personalities, we seem to be increasingly dealing with lists, statistics and faceless mobs who we interact with using "Like", "Block" and "Add Friend" buttons. I'm also concerned about this. Even when someone rationally understands on the rational level that this is just an abstraction required by the means of communication to work, we may accidentally and unnoticeably become programmed by the "Tetris effects" of these media. Awareness and criticism may very well reduce the risk, but I don't believe they can make anyone totally immune.

So, what can we do? Should we abandon social networking sites altogether to save the humanity of the human race? I don't think denialism helps anything. Instead, we should learn how to use the potential of interactive social technology in constructive rather than destructive means. We should develop new game mechanics that, instead of promoting collective stupidity and dehumanization, augment the positive sides of humanity and encourage us to improve ourselves. But is this anything great masses could become interested in? Do they any longer care about whether they remain as independent individuals? Perhaps not, but we can still hope for the best.

Tuesday, 21 June 2011

The 16-byte frontier: extreme results from extremely small programs.

While mainstream software has been getting bigger and more bloated year after year, the algorithmic artists of the demoscene have been following the opposite route: building ever smaller programs to generate ever more impressive audiovisual show-offs.

The traditional competition categories for size-limited demos are 4K and 64K, limiting the size of the stand-alone executable to 4096 and 65536 bytes, respectively. However, as development techniques have gone forward, the 4K size class has adopted many features of the 64K class, or as someone summarized it a couple of years ago, "4K is the new 64K". There are development tools and frameworks specifically designed for 4K demos. Low-level byte-squeezing and specialized algorithmic beauty have given way to high-level frameworks and general-purpose routines. This has moved a lot of "sizecoding" activity into more extreme categories: 256B has become the new 4K. For a fine example of a modern 256-byter, see Puls by Rrrrola.



The next hexadecimal order of magnitude down from 256 bytes is 16 bytes. Yes, there are some 16-byte demos, but this size class has not yet established its status on the scene. At the time of writing this, the smallest size category in the pouet.net database is 32B. What's the deal? Is the 16-byte limit too tight for anything interesting? What prevents 16B from becoming the new 256B?

Perhaps the most important platform for "bytetros" is MS-DOS, using the no-nonsense .COM format that has no headers or mandatory initialization at all. Also, in .COM files we only need a couple of bytes to obtain access to most of the vital things such as the graphics framebuffer. At the 16-byte size class, however, these "couples of bytes" quickly fill up the available space, leaving very little room for the actual substance. For example, here's a disassembly of a "TV noise" effect (by myself) in fifteen bytes:
addr  bytes     asm
0100 B0 13 MOV AL,13H
0102 CD 10 INT 10H
0104 68 00 A0 PUSH A000H
0107 07 POP ES
0108 11 C7 ADC DI,AX
010A 14 63 ADC AL,63H
010C AA STOSB
010D EB F9 JMP 0108H

The first four lines, summing up to a total of eight bytes, initialize the popular 13h graphics mode (320x200 pixels with 256 colors) and set the segment register ES to point in the beginning of this framebuffer. While these bytes would be marginal in a 256-byte demo, they eat up a half of the available space in the 16-byte size class. Assuming that the infinite loop (requiring a JMP) and the "putpixel" (STOSB) are also part of the framework, we are only left with five (5) bytes to play around with! It is possible to find some interesting results besides TV noise, but it doesn't require many hours from the coder to get the feeling that there's nothing more left to explore.

What about other platforms, then? Practically all modern mainstream platforms and a considerable portion of older ones are out of the question because of the need for long headers and startup stubs. Some platforms, however, are very suitable for the 16-byte size class and even have considerable advantages over MS-DOS. The hardware registers of the Commodore 64, for example, are more readily accessible and can be manipulated in quite unorthodox ways without risking compatibility. This spares a lot of precious bytes compared to MS-DOS and thus opens a much wider space of possibilities for the artist to explore.

So, what is there to be found in the 16-byte possibility space? Is it all about raster effects, simple per-pixel formulas and glitches? Inferior and uglier versions of the things that have already made in 32 or 64 bytes? Is it possible to make a "killer demo" in sixteen bytes? A recent 23-byte Commodore 64 demo, Wallflower by 4mat of Ate Bit, suggests that this might be possible:



The most groundbreaking aspect in this demo is that it is not just a simple effect but appears to have a structure reminiscent of bigger demos. It even has an end. The structure is both musical and visual. The visuals are quite glitchy, but the music has a noticeable rhythm and macrostructure. Technically, this has been achieved by using the two lowest-order bytes of the system timer to calculate values that indicate how to manipulate the sound and video chip registers. The code of the demo follows:
* = $7c
ora $a2
and #$3f
tay
sbc $a1
eor $a2
ora $a2
and #$7f
sta $d400,y
sta $cfd7,y
bvc $7c

When I looked into the code, I noticed that it is not very optimized. The line "eor $a2", for example, seems completely redundant. This inspired me to attempt a similar trick within the sixteen-byte limitation. I experimented with both C-64 and VIC-20, and here's something I came up with for the VIC-20:
* = $7c
lda $a1
eor $9004,x
ora $a2
ror
inx
sta $8ffe,x
bvc $7c

Sixteen bytes, including the two-byte PRG header. The visual side is not that interesting, but the musical output blew my mind when I first started the program in the emulator. Unfortunately, the demo doesn't work that well in real VIC-20s (due to an unemulated aspect of the I/O space). I used a real VIC-20 to come up with good-sounding alternatives, but this one is still the best I've been able to find. Here's an MP3 recording of the emulator output (with some equalization to silent out the the noisy low frequencies).

And no, I wasn't the only one who was inspired by Wallflower. Quite soon after it came out, some sceners came up with "ports" to ZX Spectrum (in 12 or 15 bytes + TAP header) and Atari XL (17 bytes of code + 6-byte header). However, I don't think they're as good in the esthetic sense as the original C-64 Wallflower.

So, how and why does it work? I haven't studied the ZX and XL versions, but here's what I've figured out of 4mat's original C-64 version and my VIC-20 experiment:

The layout of the zero page, which contains all kinds of system variables, is quite similar in VIC-20 and C-64. On both platforms, the byte at the address $A2 contains a counter that is incremented 60 times per second by the system timer interrupt. When this byte wraps over (every 256 steps), the byte at the address $A1 is incremented. This happens every 256/60 = 4.27 seconds, which is also the length of the basic macrostructural unit in both demos.

In music, especially in the rhythms and timings of Western pop music, binary structures are quite prominent. Oldschool homecomputer music takes advantage of this in order to maximize simplicity and efficiency: in a typical tracker song, for example, four rows comprise a beat, four beats (16 rows) comprise a bar, and four bars (64 rows) comprise a pattern, which is the basic building block for the high-level song structure. The macro-units in our demos correspond quite well to tracker patterns in terms of duration and number of beats.

The contents of the patterns, in both demos, are calculated using a formula that can be split into two parts: a "chaotic" part (which contains additions, XORs, feedbacks and bit rotations), and an "orderly" part (which, in both demos, contains an OR operation). The OR operation produces most of the basic rhythm, timbres and rising melody-like elements by forcing certain bits to 1 at the ends of patterns and smaller subunits. The chaotic part, on the other hand, introduces an unpredictable element that makes the output interesting.

It is almost a given that the outcomes of this approach are esthetically closer to glitch art than to the traditional "smooth" demoscene esthetics. Like in glitching and circuit-bending, hardware details have a very prominent effect in "Wallflower variants": a small change in register layout can cause a considerable difference in what the output of a given algorithm looks and sounds like. Demoscene esthetics is far from completely absent in "Wallflower variants", however. When the artist chooses the best candidate among countless of experiments, the judgement process strongly favors those programs that resemble actual demos and appear to squeeze a ridiculous amount of content in a low number of bytes.

When dealing with very short programs that escape straightforward rational understanding by appearing to outgrow their length, we are dealing with chaotic systems. Programs like this aren't anything new. The HAKMEM repository from the seventies provides several examples of short audiovisual hacks for the PDP-10 mainframe, and many of these are adaptations of earlier PDP-1 hacks, such as Munching Squares, dating back to the early sixties. Fractals, likewise producing a lot of detail from simple formulas, also fall under the label of chaotic systems.

When churning art out of mathematical chaos, be that fractal formulas or short machine-code programs, it is often easiest for the artist to just randomly try out all kinds of alternatives without attempting to understand the underlying logic. However, this easiness does not mean that there is no room for talent, technical progress or rational approach in the 16-byte size class. Random toying is just a characteristic of the first stages of discovery, and once a substantial set of easily discoverable programs have been found, I'm sure that it will become much more difficult to find new and groundbreaking ones.

Some years ago, I made a preliminary design for a virtual machine called "Extreme-Density Art Machine" (or EDAM for short). The primary purpose of this new platform was to facilitate the creation of extremely small demoscene productions by removing all the related problems and obstacles present in real-world platforms. There is no code/format overhead; even an empty file is a valid EDAM program that produces a visual result. There will be no ambiguities in the platform definition, no aspects of program execution that depend on the physical platform. The instruction lengths will be optimized specifically for visual effects and sound synthesis. I have been seriously thinking about reviving this project, especially now that there have been interesting excursions to the 16-byte possibility space. But I'll tell you more once I have something substantial to show.