Showing posts with label post-apocalyptic. Show all posts
Showing posts with label post-apocalyptic. Show all posts

Thursday, 9 April 2015

Bringing magic back to technology

Back in 2011, I was one of the discoverers of "Bytebeat", a type of very short computer programs that generate music. These programs received quite a lot of attention because they seem to be far too short for the complex musical structures they output. I wrote several technical articles about Bytebeat (arxiv, countercomplex 1, countercomplex 2) as well as a Finnish-language academic article about the social dynamics of the phenomenon. Those who just need a quick glance may want to check out one of the Youtube videos.

The popularity of Bytebeat can be partially explained with the concept of "hack value", especially in the context of Hakmem-style hacks -- very short programs that seem to outgrow their size. The Jargon File gives the following formal definition for "hack value" in the context of very short visual programs, display hacks:
"The hack value of a display hack is proportional to the esthetic value of the images times the cleverness of the algorithm divided by the size of the code."
Bytebeat programs apparently have a high hack value in this sense. The demoscene, being distinct from the MIT hacker lineage, does not really use the term "hack value". Still, its own ultra-compact artifacts (executables of 4096 bytes and less) are judged in a very similar manner. I might just replace "cleverness of the algorithm" with something like "freshness of the output compared to earlier work".
Another related hacker concept is "magic", which the Jargon File defines as follows:
1. adj. As yet unexplained, or too complicated to explain; compare automagically and (Arthur C.) Clarke's Third Law: "Any sufficiently advanced technology is indistinguishable from magic." "TTY echoing is controlled by a large number of magic bits." "This routine magically computes the parity of an 8-bit byte in three instructions." 
2. adj. Characteristic of something that works although no one really understands why (this is especially called black magic). 
3. n. [Stanford] A feature not generally publicized that allows something otherwise impossible, or a feature formerly in that category but now unveiled. 
4. n. The ultimate goal of all engineering & development, elegance in the extreme; from the first corollary to Clarke's Third Law: "Any technology distinguishable from magic is insufficiently advanced".
Short programs with a high hack value are magical especially in the first two senses. How and why Bytebeat programs work was often a mystery even to their discoverers. Even when some theory about them was devised, it was often quite difficult to understand or apply. Especially bitwise arithmetic tends to have very esoteric uses in Bytebeat.

The hacker definition of magic indirectly suggests that highly advanced and elegant engineering should be difficult to understand. Indecipherable program code has even been celebrated in contests such as IOCCC. This idea is highly countercultural. In mainstream software industry, clever hacks are despised: all code should be as easy as possible to understand and maintain. The mystical aspects of hacker subcultures are there to compensate for the dumb, odorless and dehumanizing qualities of the industrial chores.

Magic appears in the Jargon File in two ways. Terms such as "black magic", "voodoo programming" and "cargo cult programming" represent cases where the user doesn't know what they are doing or may not even strive to. Another aspect is exemplified by terms such as "deep magic" and "heavy wizardry": there, the technology may be difficult to understand or chaotic to control, but at least there are some talented individuals who have managed to. These aspects could be called "wild" and "domesticated", respectively, or alternatively "superstition" and "esoterica".

Most technology used to be magical in the wild/superstitious way. Cultural evolution does not require individual innovators to understand how their innovations work. Fermentation, for example, had been used for thousands of years without anyone having seen a micro-organism. Despite this, cultural evolution can find very good solutions if enough time is given: traditional craft designs often have a kind of optimality that is very difficult to attain from scratch even with the help of modern science. (See e.g. Robert Boyd et al.'s articles about cultural evolution of technology)

Science and technology have countless examples of "wild magic" getting "domesticated". An example from computer music is the Karplus-Strong string model. Earlier models of acoustic simulation had been constructed via rational analysis alone, so they were prohibitively expensive for real-time synthesis. Then, Karplus and Strong accidentally discovered a very resource-efficient model due to a software bug, and nowadays it is pretty standard textbook material without much magical glamor at all.

Magic and rationality support each other. In good technology, they would coexist in symbiosis. Industrialization, however, brought a cult of obsolescence that prevented this kind of relationship. Traditions, time-proven designs, intuitive understanding and irreducible wisdom started to get obsoleted by one-dimensional reductive analysis. Nowadays, "magic" is only tolerated as bursts of inspiration that must be captured within reductivist frameworks before they break something.

In the 20th century, utilitarian industrial engineering started to get obsoleted by its bastard offspring, tumorous engineering. This is what I discussed in my earlier essay "The resource leak bug of our civilization". Accumulation of bloat and complexity for their own sake is making technology increasingly difficult to rationally understand and control. In computing, where tumourous engineering dominates, designers are already longing back to utilitarian industry where simplicity, controllability, resource-efficiency and expertise were still valued.

When advocating the reintroduction of magic, one must be careful not to endorse the kind of superstitious thinking that already has a good hold on how people relate to technology. Devices that hide their internal logic and instead base their interfaces on guessing what the user wants are kind of Aladdin's lamps to most. You don't really understand how they work, but at least their spirits fulfill your wishes as long as you don't make them angry.

The way how magic manifests itself in traditional technology is diagonally opposite to this. The basic functional principles of a bow, a canoe or a violin can be learned via simple observation and experimentation. The mystery lies elsewhere: in the evolutionary design details that are difficult to rationally explain, in the outworldish talent and wisdom of the master crafter, in the superhuman excellence of the skilled user. If the design has been improved over generations, even minor improvements are difficult to do anymore, which gives it an aura of perfection.

The magic we need more in today's technological world is of the latter kind. We should strive to increase deepness rather than outward complexity, human virtuosity rather than consumerism, flexibility rather than effortlessness. The mysteries should invite attempts at understanding and exploitation rather than blind reliance or worship; this is also the key difference between esoterica and superstition.

One definition of magic, compatible with that in the Jargon File, is that it breaks people's preconceptions of what is possible. In order to challenge and ridicule today's technological bloat, we should particularly aim at discoveries that are "far too simple and random to work but still do". New ways to use and combine the available grassroots-level elements, for instance.

A Bytebeat formula is a simple arrangement of digital-arithmetic operations that have been elementary to computers since the very beginning. It is apparently something that should have been discovered decades ago, but it wasn't. Hakmem contains a few "sound hacks" that could have evolved into Bytebeat if a wide enough counter had been introduced into them, but there are no indications that this ever took place. It is mind-boggling to think about that the space of very short programs remains so uncharted that random excursions there can churn out new interesting structures even after seventy years.

Now consider that we are surrounded by millions of different natural "building blocks" such as plants, micro-organisms and geological materials. I honestly believe that, despite hundreds of thousands of years of cultural evolution, their combinatory space is nowhere near fully charted. For instance, it could be possible to find a rather simple and rudimentary technique that would make micro-organisms transform sand into a building material superior to everything we know today. A favorite fantasy scenario of mine is a small self-sufficient town that builds advanced spacecraft from scratch with "grassroots-level" techniques that seem magical to our eyes.

How to develop this kind of magic? Rational analysis and deterministic engineering will help us to some extent, but we are dealing with systems so chaotic and multidimensional that decades of random experimentation would be needed for many crucial leaps-forward. And we don't really have those decades if we want to beat our technological cancer.

Fortunately, the same Moore's law that empowers tumorous engineering also provides a way out. Computers make it possible to manage chaotic systems in ways other than neurotic modularization. Today's vast computational capacities can be used to simulate the technological trial-and-error of cultural evolution with various level of accuracy. Of course, simulations often fail, but at least they can give us a compass for real-world experimentation. Another important compass is "hack value" or "scientific intuition" -- the modern manifestations of the good old human sense of wonder that has been providing fitness estimations for cultural evolution since time immemorial.

Sunday, 7 September 2014

How I view our species and our world

My recent blog post "The resource leak bug of our civilization" has gathered some interest recently, especially after getting noticed by Ran Prieur in his blog. I therefore decided to translate another essay to give it a wider context. Titled "A few words about humans and the world", it is intended to be a kind of wholesome summary of my worldview, and it is especially intended for people who have had difficulties in understanding the basis of some of my opinions.

---

This writeup is supposed to be concise rather than convincing. It therefore skips a lot of argumentation, linking and breakdowns that might be considered necessary by some. I'll get back to them in more specific texts.

1. Constructions

Humans are builders. We build not only houses, devices and production machinery, but also cultures, conceptual systems and worldviews. Various constructions can be useful as tools, however we also have an unfortunate tendency to chain ourselves to them.

Right now, humankind has chained itself to the worship of abundance: it is imperative to produce and consume more and more of everything. Quantitative growth is imagined to be the same thing as progress. Especially during the last hundred years, the theology of abundance has invaded so deep and profound levels, that most people don't even realize its effect. It's not just about consumerism on a superficial level, but about the whole economic system and worldview.

Extreme examples of growth ideology can be easily found in the digital world, where it manifests as a raised-to-the-power-two version. What happens if worshippers of abundance get their hands on a virtual world where the amount of available resources increases exponentially? Right, they will start bloating up the use of resources, sometimes even for its own sake. It is not at all uncommon to require a thousand times more memory and computational power than necessary for a given task. Mindless complexity and purposeless activities are equated with technological advancement. The tools and methods the virtual world is being built with have been designed from the point of view of idealized expansion, so it is difficult to even imagine alternatives.

I have some background in a branch of hacker culture, demoscene, where the highest ideal is to use minimal resources in an optimal way. The nature of the most valued progress there is condensing rather than expanding: doing new things under ever stricter limitations. This has helped me perceive the distortions of the digital world and their counterparts in the material world.

In everyday life, the worship of growth shows up, above all, as complexification of everything. It is becoming increasingly difficult to understand various socio-economic networks or even the functionality of ordinary technological devices. This alienates people from the basics of their lives. Many try to fight this alienation by creating pockets of understandability. Escapism, conservatism and extremism rise. On the other hand, there is also an increase in do-it-yourself culture and longing to a more self-sufficient way of life. People should be encouraged into these latter-mentioned, positive means to counter alienation instead of channels that increase conflicts.

An ever greater portion of techno-economical structures consists of useless clutter, so-called economic tumors. They form when various decision-makers attempt to keep their acquired cake-pieces as big as possible. Unnecessary complexity slows down and unilateralizes progress instead of being a requirement for it. Expansion needs to be balanced with contraction -- you can't breath in without breating out.

The current phase of expansion is finally about to end, since the fossil fuels that made it possible are getting rarer, and we still don't know about an equally powerful replacement. As the phase took so long, the transition into contraction will be difficult to many. An increasingly bigger portion of economy will escape into the digital world, where it is possible to maintain the unrealistic swelling longer than in the material world.

Dependencies of production can be depicted as a pyramid where the things on the higher levels are built from the things below. In today's world, people always try to build on the top, so the result looks more like a shaky tower than a pyramid. Most new things could be easily built at lower levels. The lowest levels of the pyramid could also be strengthened by giving more room for various self-sufficient communities, local production and low-tech inventions. Technological and cultural evolution is not a one-dimensional road where "forward" and "backward" are the only alternatives. Rather, it is a network of possibilities burgeoning towards every direction, and even its strange side-loops are worth knowing.

2. Diversity

It is often assumed that growth would increase the amount of available options. In principle, this is true -- there are more and more different products on store shelves -- but their differences are more and more superficial. The same is true with ways of life: it is increasingly difficult to choose a way of life that wouldn't be attached to the same chains of production or models of thinking as every other way of life. The alternatives boil down into the same basic consumer-whoredom.

Proprietors overstandardize the world with their choices, but this probably isn't very conscious activity. When there are enough decision-makers who play the same game with the same rules, the world will eventually shape around these rules (including all the ingrained bugs and glitches). Conspiracy theories or evil-incarnates are therefore not required to explain what's going on.

The human-built machinery is getting increasingly more complex, so it is also increasingly more difficult to talk about it in concrete terms. Many therefore seek help from conceptual tools such as economic theories, legal terminology or ideologies, and subsequently forget that they are just tools. Nowadays, money- and production-centered ways of conceptualizing the world have become so dominant that people often don't realize that there are other alternatives.

Diversity helps nature adapt to changes and recover from disasters. For the same reason, human culture should be as diverse as possible especially now that the future is very uncertain and we have already started to crash into the wall. It is necessary to make it considerably less difficult to choose radically different ways of life. Much more room should be given to experimental societies. Small and unique languages and cultures should be treasured.

There's no one-size-fits-all model that would be best for everyone. However, I believe that most people would be happiest in a society that actively maintains human rights and makes certain that no one is left behind. Dictatorship of majority, however, is not that crucial feature of a political system in a world where everyone can freely choose a suitable system. Regardless, dissidents should be given enough room in every society: everyone doesn't necessarily have the chance to choose a society, and excessive unanimosity tends to be quite harmful anyway.

3. Consciousness

Thousands of years ago, the passion for construction became so overwhelming that the quest for mental refinement didn't keep with the pace. I regard this as the main reason why human beings are so prone to become slaves of their constructs. Rational analysis is the only mental skill that has been nurtured somewhat sufficiently, and even rational analysis often becomes just a tool for various emotional outbursts and desires. Even very intelligent people may be completely lost with their emotions and motivations, making them inclined to adopt ridiculously one-dimensional thought constructs.

Putting one's own herd before anyone else is an example of attitude that may work among small hunter-gatherer groups, but which should have no more place in the modern civilization. A population that has the intellectual facilities to build global networks of cause and effect should also have the ability to make decisions on the corresponding level of understanding instead of being driven by pre-intellectual instincts.

Assuming that humankind still wants to maintain complex societal and technological structures, it should fill its consciousness gap. Any school system should teach the understanding and control of one's own mind at least as seriously as reading and writing. New practical mental methods, suitable for an ever greater variety of people, should be developed at least as passionately as new material technology.

For many people, worldview is still primarily a way of expressing one's herd instincts. They argue and even fight about whose worldview is superior. It is hopeful that future will bring a more individual attitude towards them: there is no single "truth" but different ways for conceptualizing the reality. A way that is suitable for one mind may be even destructive to another mind. Science produces facts and theories that can be used as building blocks for different worldviews, but it is not possible to put these worldviews into an objective order of preference.

4. Life

The purposes of life for individual human beings stem from their individual worldviews, so it is futile to suggest rules-of-thumb that suit all of them. It is much easier to talk about the purpose of biological life, however.

The basic nature of life, based on how life is generally defined, is active self-preservation: life continuously maintains its form, spreads and adapts into different circumstances. The biological role of a living being is therefore to be part of an ecosystem, strengthening the ecosystem's potential for continued existence.

The longer there is life on Earth, the more likely it is to expand into outer space at some point of time. This expansion may already take place during the human era, but I don't think we should specifically strive for it before we have learned how to behave non-destructively. However, I'm all for the production of raw material and energy in space, if it helps us abstain from raping our home planet.

At their best, intelligent lifeforms could function as some sort of gardeners. Gardeners that strengthen and protect the life in their respective homeworlds and help spread it to other spheres. However, I don't dare to suggest that the current human species have the prequisites for this kind of role. At this moment, we are so lost that we couldn't become even a galactic plague.

Some people regard the human species as a mistake of evolution and want us to abandon everything that differentiates us from other animals. I see no problem per se in the natural behavior of homo sapiens, however: there's just an unfortunate misbalance of traits. We shouldn't therefore abandon reason, abstractions or constructivity but rebalance them with more conscious self-improvement and mental refinement.

5. The end of the world

It is not possible to save the world, if it means saving the current societies and consumer-centric lifestyles. At most, we can soften the crash a little bit. It is therefore more relevant to concentrate on activities that make the postapocalyptic world more life-friendly.

As there is still an increasing amount of communications technology and automation in the world, and the privileged even have increasingly more free time, these facilities should be used right now for sowing the seeds for a better world. If we start building alternative constructs only when the circumstances force us to, the transition will be extremely painful.

People increasingly dwell in easiness bubbles facilitated by technology. It is therefore a good idea to bring suitable signals and facilities into these bubbles. Video game technology, for example, can be used to help reclaim one's mind, life and material environment. Entertainment in general can be used to increase the interest in such a reclaim.

Many people imagine progress as a kind of unidirectional growth curve and therefore regard the postapocalyptic era as a "return to the past". However, the future world is more likely to become radically different from any previous historical era -- regardless of some possible "old-fashioned" aspects. It may therefore more relevant to use fantasy rather than history to envision the future.